
Chapter 4: Phonons I 

                   Crystal Vibrations 



  Vibrations of crystals with monatomic basis 

 

  Two atoms per primitive basis 

 

  Quantization of elastic waves 

 

  Phonon momentum 

 

  Elastic scattering of phonons 
 

OUTLINES 



Major Elementary Excitation in Solids 



Displacement of Planes of Atoms  

in a Longitudinal Wave 

Us //  K 

Us is defined as the displacement for the plane s  from  
its equilibrium position 

Longitudinal wave 



Displacement of Planes of Atoms  

in a Transverse Wave 

Us      K 

Transverse Wave 



 The equation of motion of the plane s  is  

With time dependence,  u = u exp (-iwt) 

By the traveling wave solution for a periodic set of atomic planes with a  
spacing of “a” ,  us = u exp (isKa) 

Hooke’s Law 
    We assume the elastic response of the crystal is a linear function of the forces.  

    The elastic energy is a quadratic function of the relative displacement of any  

        two points in the crystal.  

    Hooke’s Law : The force exerted on the plane s  as caused by the displacement   

        of the plane s+p  is directly proportional to the difference of the displacement  

        us+p – us .  For nearest neighbor interaction, p = ± 1 

    Hence, the total force on plane s  from planes  s+1,  and  s-1  is  

C : force constant between  
nearest neighbor planes for  
one atom in the plane 



At the first Brillouin zone boundary, K = p/a, and -p/a ,  



w  vs k  Dispersion for Monoatomic Lattice 

Linear 



-p < K a < p 
 
-p/a < K < p/a 

                           K‘ = K – 2 n p/a  = K – n G 

We can always subtract a reciprocal lattice vector G  from K  to become K’,  

to be inside the first Brillouin zone.  “Reduced zone scheme !” 

At the zone boundary, K max = p/a, and  -p/a  

This is not a traveling wave, but a standing wave; alternating atoms 
oscillate in opposite phases.  Us equals to u  or  –u, depending on s  is an 

even, or odd integer. 

The meaningful range of K  is only inside the first Brillouin Zone  

of the linear lattice. 



Reciprocal Lattice Vector 

倒晶格向量 

倒晶格 



Simple Cubic 



Group Velocity 

The trasmission velocity of a wave packet is the group velocity 

At zone boundary, K = p/a,   Vg = 0  for standing wave  

At  the zone center, Ka << 1,  the continuum approximation  

vg = (C/M)1/2 a 

From Eq. 9,  

Vg ~ is nearly a constant  

See Figure 6 



Group Velocity Vg vs K of Mono Atomic Lattice 



The Traveling Wave Description of  

the Atomic Displacement in a linear lattice 

 / 2  > a 

 >  2a 

K   <   p/a 

a: lattice spacing 



Derivation of Force Constant from Experiment 

For longer range force, we include p nearest planes of contributions  
to w 

Note the integral vanishes, except for p = r , and that equals to -p/a 

From experimentally measured wK, we will derive Cp  

We times M cos rKa term on both sides, and integrate over K 



Displacement of a Diatomic Linear 

Crystal Structure 

M1 M2 

Here  M1  >  M2 

Considering only nearest neighbor interaction, force constant C  
are identical between all pairs of near-neighbor planes. 

a ɑ 



Equation of Motion for a Diatomic Linear Crystal 

Traveling wave solution  

a  as the distance between nearest identical planes,  

but not nearest neighbor planes. 

s 



w vs K  for a Diatomic Linear Crystal 

Solution exists only if the determinant of the coefficients vanishes 

At  Ka << 1, 

At  Ka = p, -p  at the zone boundary 

  at the zone center 

Nearly a constant with  K 
 
 
Nearly linear with K 

(-iKa)] 



Optical and Acoustic Branches of the  

Dispersion for a Diatomic Linear Lattice 

0 



[111] Phonon  

Dispersion in Ge 

TA + LA  phonon 



[111] Phonon  

Dispersion in KBr 



Transverse Optical and Transverse Acoustic 

Waves of a Diatomic Linear Lattice  

For K = 0, optical branch 

For K = 0, acoustic branch, u = v 

Center of mass is fixed like  

a dipole as easily excited by 

E  field in the optical wave. 

The atoms move in phase like 

acoustic wave in long wavelength. 

Substituting  Eq. 23 to Eq. 20,  we get 

M1 u + M2 v = 0 



Quantization of Elastic Waves 

The quantum of lattice vibration energy is called phonon,  and 

the quantum number is denoted as n.  The elastic waves in 

crystals are made of phonons.  

u = uo cos Kx cos wt  for a standing wave 

The time average kinetic energy is  

The sign of w  is usually positive; for imaginary w, the crystal is unstable. 

An optical mode with w  close to zero is called a soft mode.  



Phonon Momentum 

Physical momentum of a crystal is   

  The physical momentum of a crystal is zero.  

p = M (d/dt) Σ us                                                (30) 

p = M (du/dt) Σ exp(isKa) = 0                                (33) 
s 

Σ xs = (1－xN) / (1－x)                                            (32) 
s＝0 

N－1 

p = M (du/dt) Σ exp(isKa) =  

      M (du/dt) [1－ exp(iNKa)] / [1－ exp(iKa)]          (31) 

s 

  For K = ± 2p r/Na ,     Exp(iNKa) = exp (± i 2 p r) = 1 



 Phonon Momentum 

Elastic scattering of photons by a crystal 

it creates a phonon momentum K 

For inelastic photon scattering, 

For absorption of a phonon  K 

Inelastic neutron scattering by phonons to obtain w (K) 



Phonon Dispersions of Na in 3-D 





 Problem set  

 No. 1, 3, and 4. 

 

  Due 11/2, Wed. class 

Chapter 4 


