Chapter 4: Phonons I Crystal Vibrations

OUTLINES

- □ Vibrations of crystals with monatomic basis
- ☐ Two atoms per primitive basis
- ☐ Quantization of elastic waves
- ☐ Phonon momentum
- □ Elastic scattering of phonons

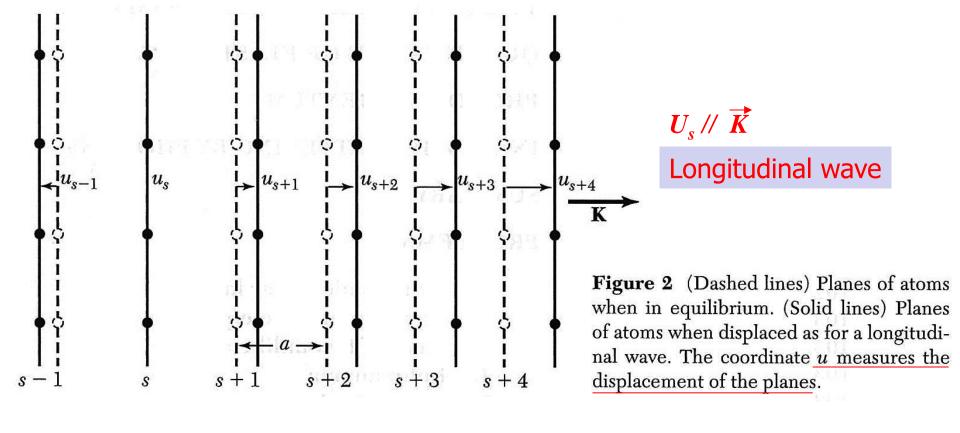
Major Elementary Excitation in Solids

4	Name	Field
<u></u>	Electron	
~~~	Photon	Electromagnetic wave
<b>─</b> ₩→	Phonon	Elastic wave
	Plasmon	Collective electron wave
—ww—	Magnon	Magnetization wave
	Polaron	Electron + elastic deformation
	Exciton	Polarization wave

Figure 1 Important elementary excitations in solids.

# Displacement of Planes of Atoms in a Longitudinal Wave

 $U_s$  is defined as the displacement for the plane s from its equilibrium position



# Displacement of Planes of Atoms in a Transverse Wave

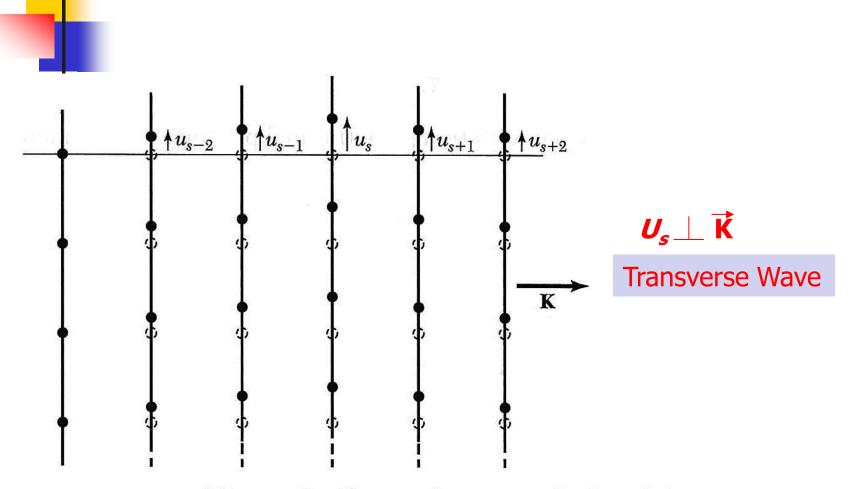


Figure 3 Planes of atoms as displaced during passage of a transverse wave.

#### Hooke's Law

- ☐ We assume the elastic response of the crystal is a linear function of the forces.
- The elastic energy is a quadratic function of the relative displacement of any two points in the crystal.
- Hooke's Law: The force exerted on the plane s as caused by the displacement of the plane s+p is directly proportional to the difference of the displacement  $u_{s+p}-u_s$ . For nearest neighbor interaction,  $p=\pm 1$
- $\square$  Hence, the total force on plane s from planes s+1, and s-1 is

$$F_s = C(u_{s+1} - u_s) + C(u_{s-1} - u_s)$$
(1)

The equation of motion of the plane s is

$$M\frac{d^2u_s}{dt^2} = C(u_{s+1} + u_{s-1} - 2u_s) ,$$

**C:** force constant between nearest neighbor planes for one atom in the plane

With time dependence,  $u = u \exp(-i\omega t)$ 

$$-M\omega^2 u_s = C(u_{s+1} + u_{s-1} - 2u_s) \tag{3}$$

By the traveling wave solution for a periodic set of atomic planes with a spacing of "a",  $u_s = u \exp(isKa)$ 

$$u_{s\pm 1} = u \exp(isKa) \exp(\pm iKa) , \qquad (4)$$

 $-\omega^2 Mu \exp(isKa)$ 

$$= Cu\{\exp[i(s+1)Ka] + \exp[i(s-1)Ka] - 2\exp(isKa)\} .$$
 (5)

$$\omega^2 M = -C[\exp(iKa) + \exp(-iKa) - 2] . \tag{6}$$

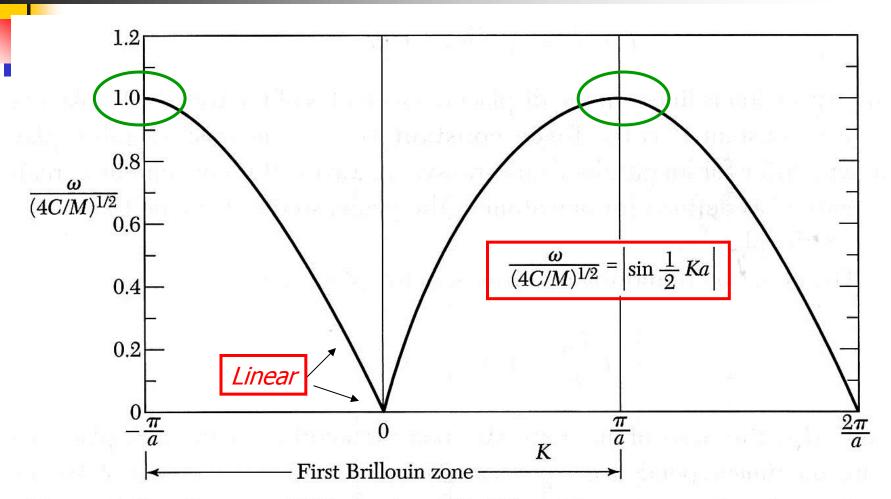
$$\omega^2 = (2C/M)(1 - \cos Ka) . \tag{7}$$

At the first Brillouin zone boundary,  $K = \pi/a$ , and  $-\pi/a$ ,

$$d\omega^2/dK = (2Ca/M)\sin Ka = 0 \tag{8}$$

$$\omega^2 = (4C/M)\sin^2\frac{1}{2}Ka \; ; \qquad \omega = (4C/M)^{1/2}|\sin\frac{1}{2}Ka| \; . \tag{9}$$

### w vs κ Dispersion for Monoatomic Lattice



**Figure 4** Plot of  $\omega$  versus K. The region of  $K \leq 1/a$  or  $\lambda \geq a$  corresponds to the continuum approximation; here  $\omega$  is directly proportional to K.

$$\frac{u_{s+1}}{u_s} = \frac{u \exp[i(s+1)Ka]}{u \exp(isKa)} = \exp(iKa) .$$
 
$$\frac{-\pi < Ka < \pi}{-\pi/a < K < \pi/a}$$
 (10)

The meaningful range of K is only inside the first Brillouin Zone of the linear lattice.

$$u_{s+1}/u_s = \exp(iKa) \equiv \exp(i2\pi n) \exp[i(Ka - 2\pi n)] \equiv \exp(iK'a) , \qquad (11)$$

$$K' = K - 2 \text{ n } \pi/\text{a} = K - \text{ n } G$$

We can always subtract a reciprocal lattice vector **G** from **K** to become **K'**, to be inside the first Brillouin zone. "**Reduced zone scheme!**"

At the zone boundary, 
$$K_{max} = \pi/a$$
, and  $-\pi/a$   $u_s = u \exp(\pm is\pi) = u (-1)^s$ . (12)

This is not a traveling wave, but **a standing wave**; alternating atoms oscillate in opposite phases.  $U_s$  equals to u or -u, depending on s is an even, or odd integer.

#### Reciprocal Lattice Vector

To proceed further with the Fourier analysis of the electron concentration we must find the vectors  $\mathbf{G}$  of the Fourier sum  $\sum n_{\mathbf{G}} \exp(i\mathbf{G} \cdot \mathbf{r})$  as in (9).

We construct the axis vectors  $\mathbf{b}_1$ ,  $\mathbf{b}_2$ ,  $\mathbf{b}_3$  of the **reciprocal lattice**: 倒晶格

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3} ; \qquad \mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3} ; \qquad \mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}. \quad (13)$$

If  $\mathbf{a}_1$ ,  $\mathbf{a}_2$ ,  $\mathbf{a}_3$  are primitive vectors of the crystal lattice, then  $\mathbf{b}_1$ ,  $\mathbf{b}_2$ ,  $\mathbf{b}_3$  are **primitive vectors of the reciprocal lattice**. Each vector defined by (13) is orthogonal to two axis vectors of the crystal lattice. Thus  $\mathbf{b}_1$ ,  $\mathbf{b}_2$ ,  $\mathbf{b}_3$  have the property  $\mathbf{b}_i \cdot \mathbf{a}_i = 2\pi \delta_{ij}, \qquad (14)$ 

where  $\delta_{ij} = 1$  if i = j and  $\delta_{ij} = 0$  if  $i \neq j$ .

Points in the reciprocal lattice are mapped by the set of vectors

$$\mathbf{G} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3 , \qquad (15)$$

where  $v_1, v_2, v_3$  are integers. A vector **G** of this form is a **reciprocal lattice** vector.

倒晶格向量

#### Reciprocal Lattice to sc Lattice

#### **Simple Cubic**

The primitive translation vectors of a simple cubic lattice may be taken as the set

$$\mathbf{a}_1 = a\hat{\mathbf{x}} \; ; \qquad \mathbf{a}_2 = a\hat{\mathbf{y}} \; ; \qquad \mathbf{a}_3 = a\hat{\mathbf{z}} \; . \tag{27a}$$

Here  $\hat{\mathbf{x}}$ ,  $\hat{\mathbf{y}}$ ,  $\hat{\mathbf{z}}$  are orthogonal vectors of unit length. The volume of the cell is  $\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3 = a^3$ . The primitive translation vectors of the reciprocal lattice are found from the standard prescription (13):

$$\mathbf{b}_1 = (2\pi/a)\hat{\mathbf{x}}$$
;  $\mathbf{b}_2 = (2\pi/a)\hat{\mathbf{y}}$ ;  $\mathbf{b}_3 = (2\pi/a)\hat{\mathbf{z}}$ . (27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice constant  $2\pi/a$ .

The boundaries of the first Brillouin zones are the planes normal to the six reciprocal lattice vectors  $\pm \mathbf{b}_1$ ,  $\pm \mathbf{b}_2$ ,  $\pm \mathbf{b}_3$  at their midpoints:

$$\pm \frac{1}{2} \mathbf{b}_1 = \pm (\pi/a) \hat{\mathbf{x}} \; ; \qquad \pm \frac{1}{2} \mathbf{b}_2 = \pm (\pi/a) \hat{\mathbf{y}} \; ; \qquad \pm \frac{1}{2} \mathbf{b}_3 = \pm (\pi/a) \hat{\mathbf{z}} \; .$$
 (28)

The six planes bound a cube of edge  $2\pi/a$  and of volume  $(2\pi/a)^3$ ; this cube is the first Brillouin zone of the sc crystal lattice.

### **Group Velocity**



The trasmission velocity of a wave packet is the group velocity

$$v_{\rm g} = d\omega/dK$$
 ,

or

$$\mathbf{v}_{g} = \operatorname{grad}_{\mathbf{K}} \boldsymbol{\omega}(\mathbf{K}) , \qquad (13)$$

From Eq. 9, 
$$v_g = (Ca^2/M)^{1/2} \cos \frac{1}{2} Ka$$
.

At zone boundary,  $K = \pi/a$ ,  $V_q = 0$  for standing wave At the zone center,  $Ka \ll 1$ , the continuum approximation

$$\omega^2 = (C/M)K^2a^2 \quad . \tag{15}$$

$$\mathbf{v_g} = (C/M)^{1/2} a$$
  $V_g \sim$  is nearly a constant

See Figure 6

### Group Velocity Vg vs K of Mono Atomic Lattice

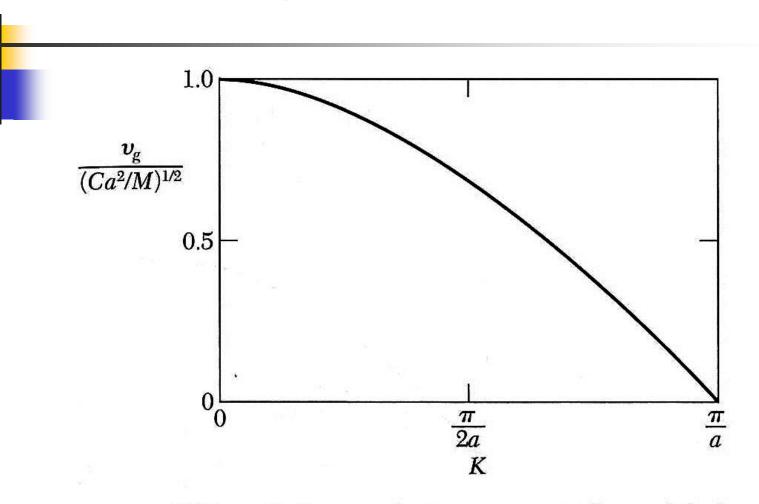
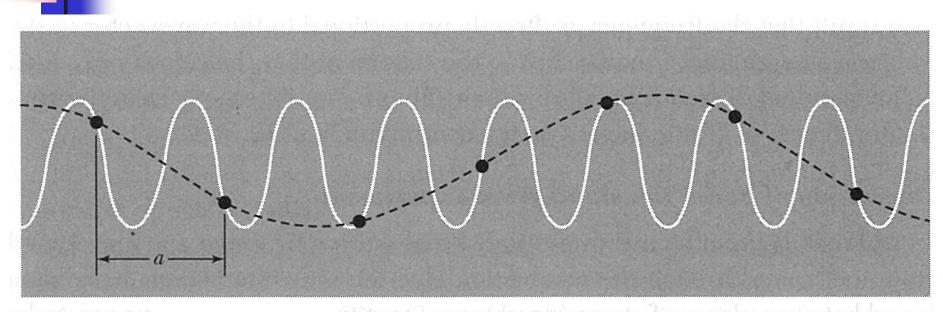


Figure 6 Group velocity  $v_g$  versus K, for model of Fig. 4. At the zone boundary  $K = \pi/a$  the group velocity is zero.

# The Traveling Wave Description of the Atomic Displacement in a linear lattice



**Figure 5** The wave represented by the solid curve conveys no information not given by the dashed curve. Only wavelengths longer than 2a are needed to represent the motion.

a: lattice spacing

$$\lambda$$
 /2 > a
 $\lambda$  > 2a
 $K$  <  $\pi$ /a

### Derivation of Force Constant from Experiment



For longer range force, we include  ${\it p}$  nearest planes of contributions to  $\omega$ 

$$\omega^2 = (2/M) \sum_{p>0} C_p (1 - \cos pKa) . \tag{16a}$$

We times *M* cos rKa term on both sides, and integrate over K

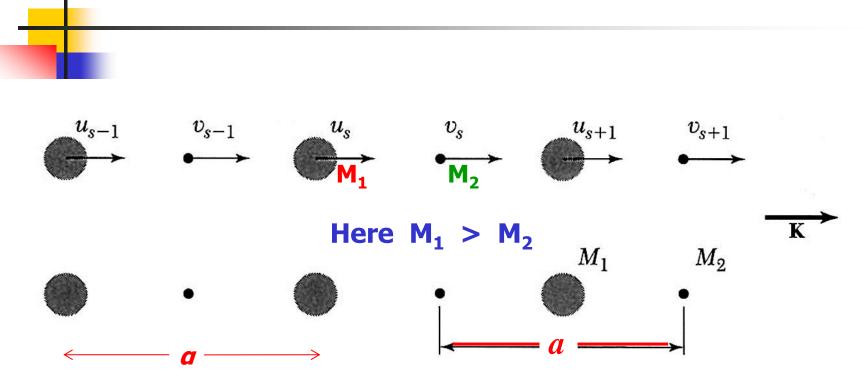
$$M \int_{-\pi/a}^{\pi/a} dK \, \omega_K^2 \cos r K a = 2 \sum_{p>0} C_p \int_{-\pi/a}^{\pi/a} dK \, (1 - \cos p K a) \cos r K a$$
$$= -2\pi C_r / a . \tag{16b}$$

Note the integral vanishes, except for p = r, and that equals to  $-\pi/a$ 

$$C_p = -\frac{Ma}{2\pi} \int_{-\pi/a}^{\pi/a} dK \,\omega_K^2 \cos pKa \tag{17}$$

From experimentally measured  $\omega_{\kappa}$ , we will derive  $C_{\rho}$ 

# Displacement of a <u>Diatomic</u> Linear Crystal Structure



**Figure 9** A diatomic crystal structure with masses  $M_1$ ,  $M_2$  connected by force constant C between adjacent planes. The displacements of atoms  $M_1$  are denoted by  $u_{s-1}$ ,  $u_s$ ,  $u_{s+1}$ , ..., and of atoms  $M_2$  by  $v_{s-1}$ ,  $v_s$ ,  $v_{s+1}$ . The repeat distance is a in the direction of the wavevector K. The atoms are shown in their undisplaced positions.

Considering only nearest neighbor interaction, force constant *C* are identical between all pairs of near-neighbor planes.

## Equation of Motion for a Diatomic Linear Crystal



$$M_{1} \frac{d^{2}u_{s}}{dt^{2}} = C(v_{s} + v_{s-1} - 2u_{s}) ;$$

$$M_{2} \frac{d^{2}v_{s}}{dt^{2}} = C(u_{s+1} + u_{s} - 2v_{s}) .$$
(18)

Traveling wave solution

**a** as the distance between nearest identical planes, but not nearest neighbor planes.

$$-\omega^2 M_1 u = Cv[1 + \exp(-iKa)] - 2Cu ;$$
  

$$-\omega^2 M_2 v = Cu[\exp(iKa) + 1] - 2Cv .$$
(20)

### w vs K for a Diatomic Linear Crystal

Solution exists only if the determinant of the coefficients vanishes

$$\begin{vmatrix} 2C - M_1 \omega^2 & -C[1 + \exp(-iKa)] \\ -C[1 + \exp(iKa)] & 2C - M_2 \omega^2 \end{vmatrix} = 0 , \qquad (21)$$

$$M_1 M_2 \omega^4 - 2C(M_1 + M_2)\omega^2 + 2C^2(1 - \cos Ka) = 0 . (22)$$

At *Ka << 1*, at the zone center

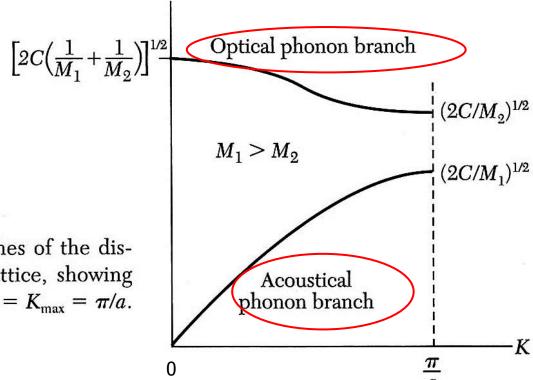
$$\omega^2 \cong 2C \left(\frac{1}{M_1} + \frac{1}{M_2}\right)$$
 (optical branch); (23)  
Nearly a constant with  $K$ 

$$\omega^2 \cong \frac{\frac{1}{2}C}{M_1 + M_2} K^2 a^2$$
 (acoustical branch) . Nearly linear with  $K$  (24)

At Ka = p, -p at the zone boundary

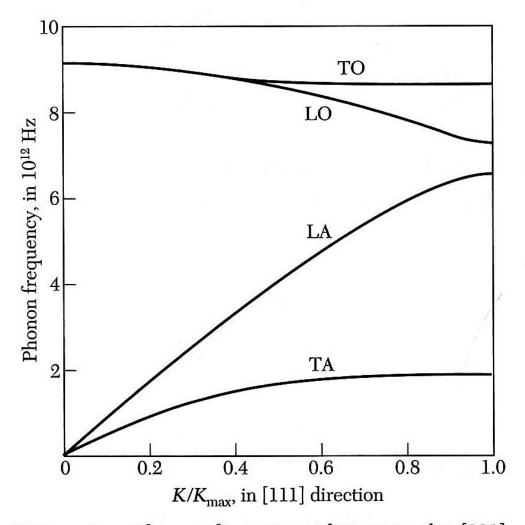
$$\omega^2 = 2C/M_1 \; ; \qquad \omega^2 = 2C/M_2 \; . \tag{25}$$

# Optical and Acoustic Branches of the Dispersion for a Diatomic Linear Lattice



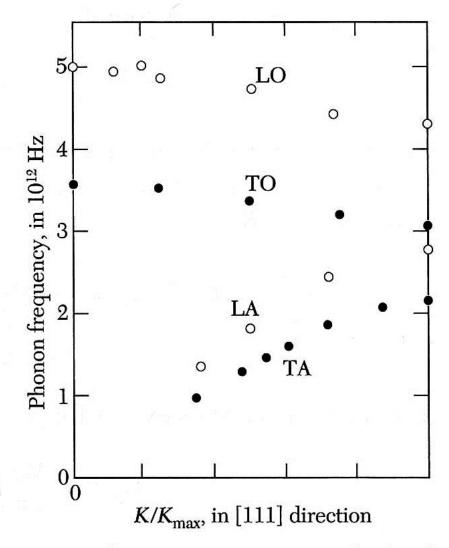
**Figure 7** Optical and acoustical branches of the dispersion relation for a diatomic linear lattice, showing the limiting frequencies at K = 0 and  $K = K_{\text{max}} = \pi/a$ . The lattice constant is a.

# [111] Phonon Dispersion in Ge



**Figure 8a** Phonon dispersion relations in the [111] direction in germanium at 80 K. The two **TA + LA** phonon branches are horizontal at the zone boundary position,  $K_{\text{max}} = (2\pi/a)(\frac{1}{2}\frac{1}{2}\frac{1}{2})$ . The LO and TO branches coincide at K = 0; this also is a consequence of the crystal symmetry of Ge. The results were obtained with neutron inelastic scattering by G. Nilsson and G. Nelin.

# [111] Phonon Dispersion in KBr



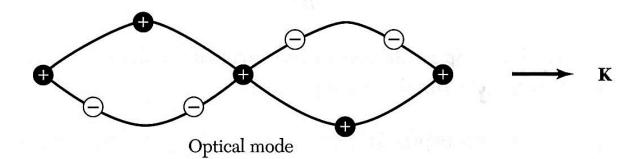
**Figure 8b** Dispersion curves in the [111] direction in KBr at 90 K, after A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W. Cochran. The extrapolation to K = 0 of the TO, LO branches are called  $\omega_T$ ,  $\omega_L$ .

# Transverse Optical and Transverse Acoustic Waves of a Diatomic Linear Lattice

Substituting Eq. 23 to Eq. 20, we get

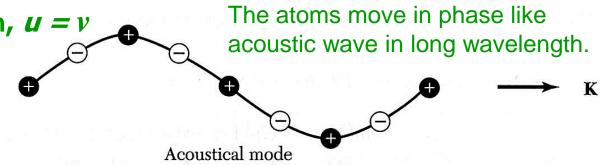
For 
$$K = 0$$
, optical branch  $u = 0$   $\frac{u}{v} = -\frac{M_2}{M_1}$ . (26)

Center of mass is fixed like a dipole as easily excited by **E** field in the optical wave.



For K = 0, acoustic branch, u = v

Figure 10 <u>Transverse optical</u> and <u>transverse acoustical waves</u> in a diatomic linear lattice, illustrated by the particle displacements for the two modes at the same wavelength.



#### Quantization of Elastic Waves



The quantum of lattice vibration energy is called phonon, and the quantum number is denoted as *n*. The elastic waves in crystals are made of phonons.

$$\epsilon = (n + \frac{1}{2})\hbar\omega \tag{27}$$

 $u = u_o \cos Kx \cos wt$  for a standing wave

The time average kinetic energy is

$$\frac{1}{8}\rho V\omega^2 u_0^2 = \frac{1}{2}(n + \frac{1}{2})\hbar\omega \quad , \tag{28}$$

$$u_0^2 = 4(n + \frac{1}{2})\hbar/\rho V\omega . {(29)}$$

The sign of  $\omega$  is usually positive; for imaginary  $\omega$ , the crystal is unstable. An optical mode with  $\omega$  close to zero is called a soft mode.

#### Phonon Momentum

Physical momentum of a crystal is

$$\mathbf{p} = M \left( \frac{d}{dt} \right) \sum u_{s} \tag{30}$$

$$p = M (du/dt) \sum_{s} \exp(isKa) =$$

$$M\left(\frac{du}{dt}\right)\left[1-\exp(iN\mathbf{K}a)\right]/\left[1-\exp(i\mathbf{K}a)\right] \tag{31}$$

$$\sum_{s=0}^{N-1} x^s = (1-x^N) / (1-x) \tag{32}$$

For 
$$\mathbf{K} = \pm 2\pi r/Na$$
,  $Exp(iN\mathbf{K}a) = exp(\pm i 2\pi r) = 1$ 

$$\mathbf{p} = M \left( \frac{du}{dt} \right) \sum_{s} exp(is\mathbf{K}a) = 0 \tag{33}$$

The physical momentum of a crystal is zero.

### Phonon Momentum

$$\mathbf{k'} = \mathbf{k} + \mathbf{G}$$
, Elastic scattering of photons by a crystal (34)

$$\mathbf{k'} + \mathbf{\underline{K}} = \mathbf{k} + \mathbf{G}$$
 For inelastic photon scattering, it creates a phonon momentum  $\mathbf{K}$  (35)

$$\mathbf{k}' = \mathbf{k} + \mathbf{K} + \mathbf{G}$$
. For absorption of a phonon  $\mathbf{K}$  (36)

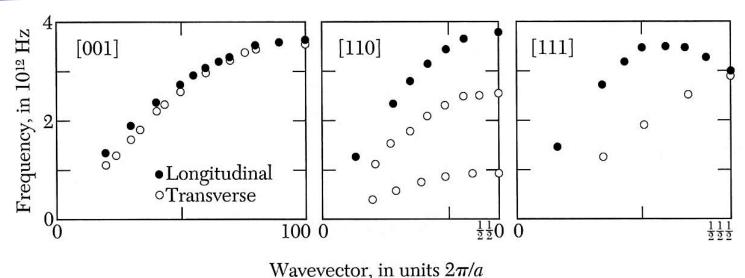
Inelastic **neutron** scattering by phonons to obtain  $\omega$  (K)

$$\mathbf{k} + \mathbf{G} = \mathbf{k}' \pm \mathbf{K} , \qquad (37)$$

$$\frac{\hbar^2 k^2}{2M_n} = \frac{\hbar^2 k'^2}{2M_n} \pm \hbar \omega \quad , \tag{38}$$

### Phonon Dispersions of Na in 3-D





**Figure 11** The dispersion curves of sodium for phonons propagating in the [001], [110], and [111] directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse, March and Bowers.

#### **SUMMARY**

- The quantum unit of a crystal vibration is a phonon. If the angular frequency is  $\omega$ , the energy of the phonon is  $\hbar\omega$ .
- When a phonon of wavevector  ${\bf K}$  is created by the inelastic scattering of a photon or neutron from wavevector  ${\bf k}$  to  ${\bf k}'$ , the wavevector selection rule that governs the process is

$$\mathbf{k} = \mathbf{k}' + \mathbf{K} + \mathbf{G} ,$$

where **G** is a reciprocal lattice vector.

- All elastic waves can be described by wavevectors that lie within the first Brillouin zone in reciprocal space.
- If there are p atoms in the primitive cell, the phonon dispersion relation will have 3 acoustical phonon branches and 3p-3 optical phonon branches.

### Chapter 4



Problem set

No. 1, 3, and 4.

Due 11/2, Wed. class