Chapter 4: Phonons |

!'_ Crystal Vibrations




OUTLINES

O Vibrations of crystals with monatomic basis
d Two atoms per primitive basis

d Quantization of elastic waves

d Phonon momentum

 Elastic scattering of phonons



Major Elementary Excitation in Solids

Name Field
> Electron S
AN Photon Electromagnetic wave
sy AL e Phonon Elastic wave
e L —— Plasmon Collective electron wave
—\MJ—> Magnon Magnetization wave
- Polaron Electron + elastic deformation
- Exciton Polarization wave

Figure 1 Important elementary excitations in solids.



Displacement of Planes of Atoms
In a Longitudinal Wave
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U, is defined as the displacement for the plane s from
its equilibrium position
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Displacement of Planes of Atoms
In a Transverse Wave
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Figure 3 Planes of atoms as displaced during
passage of a transverse wave.




Hooke’s Law

We assume the elastic response of the crystal is a linear function of the forces.
The elastic energy is a quadratic function of the relative displacement of any
two points in the crystal.

Hooke’s Law : The force exerted on the plane 8§ as caused by the displacement
of the plane 8$¥p is directly proportional to the difference of the displacement
Us+, — Us . For nearest neighbor interaction, p = 2 7

Hence, the total force on plane s from planes s+7, and s-7 is

F,=Clu,; —u, +Clu,_; —u,) (1)
The equation of motion of the plane s is € force constant between

nearest neighbor planes for

d’u tom in the pl
M B C(us+1 24 Uy — 2us) , one atom In the plane (2)

dt?
With time dependence, v = u exp (-iwt)
_szus = C(us+1 + Us—1 — 2‘us) (3)

By the traveling wave solution for a periodic set of atomic planes with a
spacing of "a” , u,= uexp (isKa)

U+, = u exp(isKa) exp(* iKa) , (4)




* —w*Mu exp(isKa)

= Cufexpli(s + 1)Ka] + expli(s — 1)Ka] — 2 exp(isKa)} .

w’M = —Clexp(iKa) + exp(—iKa) — 2] .

w®> = (2C/M)(1 — cos Ka) .

At the first Brillouin zone boundary, K = z/a, and -n/a,

dw*/dK = (2Ca/M) sin Ka =0

w® = (4C/M) sin® 5 Ka ;

w = (4C/M)*|sin 5 Ka| |




@ VS x Dispersion for Monoatomic Lattice
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Figure 4 Plot of w versus K. The region of K < 1/a or A > a corresponds to the contin-

uum approximation; here w is directly proportional to K.



; -Tr<Ka<nrn
* Ugyy _ U expli(s + 1)Ka] ———— (10)

U u exp(isKa) -1 < K < 7/

The meaningful range of K is only inside the first Brillouin Zone
of the linear lattice.

U,1/u, = exp(iKa) = exp(i2mn) expli(Ka — 2mn)] = exp(iK'a) , (11)

K'=K-2nzn/fa =K-nG
We can always subtract a reciprocal lattice vector G from K to become K’,
to be inside the first Brillouin zone. “Reduced zone scheme !”

At the zone boundary, K .., = n/a, and -n/a
u, =uexp(xism) =u (—1) . (12)

This is not a traveling wave, but a standing wave; alternating atoms
oscillate in opposite phases. U, equals to ¥4 or —u, depending on s is an
even, or odd integer.




Reciprocal Lattice \ector

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum Zn¢ exp(iG - r) as in (9).

We construct the axis vectors by, b, b, of the reciprocal lattice: 3] 5 %%

a; X a,
a;ra; Xag

a3><a1
a;*a X a3

a2><a3
a;ca; Xag '’

If a,. a,. a, are primitive vectors of : '

primitive vectors of the reciprocal lattice. Each vector defined by (13) is
orthogonal to two axis vectors of the crystal lattice. Thus by, by, b; have the

b, = 27 b, = 27 b, = 27 (13)

.
2

ropert
Sk b b;-a; =275, , (14)
whereS,-j = 1if¢ =jand8,.j = 0ifi #j.
Points in the reciprocal lattice are mapped by the set of vectors
G= Ulbl “ 'ngg T+ U3b3 3 (15)

where v,, v,, v; are integers. A vector G of this form is a reciprocal lattice vector.

(& SR (7] =




Reciprocal Lattice to sc Lattice Simple Cubic

The primitive translation vectors of a simple cubic lattice may be taken as
the set

A

a, =ax ; a, =ay ; a; = az . (27a)

Here X, y, z are orthogonal vectors of unit length. The volume of the cell is
a; - a; X az = ¢°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b, = 2n/a)x ; b, = (27/a)y ; b, = (27/a)z . (27b)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice
constant 27/a.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors £b;, £b,, *b; at their midpoints:

+2b, = *(m/a)x ; +5by = *(m/a)y ; +2by = *(wla)z . (28)

The six planes bound a cube of edge 27/a and of volume (27/a)®; this cube is
the first Brillouin zone of the sc crystal lattice.




Group Velocity
|

i The trasmission velocity of a wave packet is the group velocity

v, = dw/dK ,

or

v, = gradg o(K) , (13)
From Eq. 9,| v, = (Ca®’’M)"* cos 3 Ka . (14)

At zone boundary, K = n/a, V, =0 for standing wave
At the zone center, Ka << 1, the continuum approximation

w® = (C/M)K?a* . (15)

v, = (C/IM)¥2a  V~is nearly a constant

See Figure 6



Group Velocity Vg vs K of Mono Atomic Lattice
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Figure 6 Group velocity v, versus K, for model of
Fig. 4. At the zone boundary K = 7/a the group

velocity is zero.



The Traveling Wave Description of
the Atomic Displacement in a linear lattice

Figure 5 The wave represented by the solid curve conveys no information not given by the
dashed curve. Only wavelengths longer than 2a are needed to represent the motion.

A /2 >a
a: lattice spacing A > 2a
K < n/a



Derivation of Force Constant from Experiment

i For longer range force, we include p nearest planes of contributions
tow

o® = (2/M) D, C,(1 — cos pKa) . (16a)

p>0
We times M cos rKa term on both sides, and integrate over K

Tla Tla
M| dKwgcosrKa=2>C,| dK(1— cospKa)cosrKa
—/a p>0 —7/a
= —2mC,/a . (16b)
Note the integral vanishes, except for p = r, and that equals to -r/a
Tla
c,=—Me| "™ Ik wk cos pKa (17)

g 21 g \

From experimentally measured ay, we will derive C,



Displacement of a Diatomic Linear
Crystal Structure

Us—1 Us—1 Uy s Us+1 Os+1
. ‘M M .
1 2

Here M; > M, K

®e - & : o
Figure 9 A diatomic crystal structure with masses M;, M, connected by force constant C be-

tween adjacent planes. The displacements of atoms M, are denoted by u,_,, u,, ugyy, . . ., and of

atoms M, by v,_,, v, 0,+,. The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.

Considering only nearest neighbor interaction, force constant C
are identical between all pairs of near-neighbor planes.



Equation of Motion for a Diatomic Linear Crystal

|

2
Ml 1; C(Ds T 055 — 2us) >
dt
&, (18)
M2 (us+l T Us — Q‘US) .
dt? | |
Traveling wave solution

u, = u exp(isKa) exp(—iwt) ;

)

v s = v exp(isKa) exp(—iwt) . (19)

a as the distance between nearest identical planes,
but not nearest neighbor planes.

—w’Mu = Co[l + exp(—iKa)] — 2Cu ; (90)
—w’My = Culexp(iKa) + 1] — 2Cv .



I @ Vs K for a Diatomic Linear Crystal

* Solution exists only if the determinant of the coefficients vanishes

2C — M,0” —Cl[1 + exp (-iKa)]| _ 0 (21)
—C[1 + exp(iKa)] 2C — M,w* ’
M, Myw* — 2C(M; + Myw?® + 2C¥1 — cos Ka) =0 . (22)
At Ka << 7, atthe zone center
w® = 2C ( Z\/ll + 2\/11 ) (optical branch) ; (23)
1 2 Nearly a constant with X
1
= &
e K%a® (acoustical branch) . (24)
M, + M, Nearly linear with K

At Ka =p, -p atthe zone boundary
®=2C/M, ; @®>=2C/M, . (25)



Optical and Acoustic Branches of the
. Dispersion for a Diatomic Linear Lattice

[2C< L )]1/2 @Iphonon bramD
Ml M2 \:
 (2C/My)"
M, > M, :
| (2C/M )2
|
|
Figure 7 Optical and acoustical branches of the dis- E
persion relation for a diatomic linear lattice, showing Kanistical |
the limiting frequencies at K = 0 and K = K., = 7/a. honon branch |
The lattice constant is a. !
p= K
a
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Figure 8a Phonon dispersion relations in the [111]
direction in germanium at 80 K. The two TA + LA phonon
branches are horizontal at the zone boundary position,
K, = (2m/a)(333). The LO and TO branches coincide at

K = 0; this also is a consequence of the crystal symmetry
of Ge. The results were obtained with neutron inelastic
scattering by G. Nilsson and G. Nelin.
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Figure 8b Dispersion curves in the [111]
direction in KBr at 90 K, after A. D. B.
Woods, B. N. Brockhouse, R. A. Cowley,
and W. Cochran. The extrapolation to K = 0
of the TO, LO branches are called w;, ;.



Transverse Optical and Transverse Acoustic

Vl\/aves of a Diatomic Linear Lattice

i Substituting Eqg. 23 to Eq. 20, we get

For K = 0, optical branch
° u_ 22 (26)
M;u+M,v=0

Center of mass is fixed like
a dipole as easily excited by
E field in the optical wave.

Optical mode

For K = 0, acoustic branch, v =V The atoms move in phase like

acoustic wave in long wavelength.
Figure 10 Transverse optical and

transverse acoustical waves in a di-
atomic linear lattice, illustrated by the
particle displacements for the two
modes at the same wavelength.

Acoustical mode



I Quantization of Elastic Waves

the quantum number is denoted as n. The elastic waves in
crystals are made of phonons.

e=(n+3)ho (27)

* The quantum of lattice vibration energy is called phonon, and

U = u, cos Kx cos wt for a standing wave

The time average kinetic energy is

s pVolul =3(n + 35)ho | (28)

u2=4(n + 3)k/pVo . (29)

The sign of @ is usually positive; for imaginary @, the crystal is unstable.
An optical mode with @ close to zero is called a soft mode.



| Phonon Momentum

j Physical momentum of a crystal is

p =M (d/dt) 2 u, (30)
0 = M (du/dt) § exp(isKa) =
M (du/dt) [1— exp(iINKa)] / [1— exp(iKa)] (31)

N—1
2 x5 =(1—xN) / (1—x) (32)
s=0
ForK=x2zr/Na, EXxp(iNKa)=exp(xi2zr)=1
p = M (du/dt) 2. exp(isKa) = 0 (33)

The physical momentum of a crystal is zero.



| Phonon Momentum

*k'=k+c, 3.4)

Elastic scattering of photons by a cryst

For inelastic photon scattering,
* it creates a phonon momentum K (

k+K=k+G 35)

k' =k + K+ G . For absorption of a phonon K  (36)

Inelastic neutron scattering by phonons to obtain @ (K)
k+G=k' =K, (37)

ﬁ2k2 ﬁzk 2
— -+
oM, oM,

n

hw | (38)



Phonon Dispersions of Na in 3-D
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Figure 11 The dispersion curves of sodium for phonons propagating in the [001], [110], and
[111] directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse,
March and Bowers.



SUMMARY

o The quantum unit of a crystal vibration is a phonon. If the angular fre-
quency is w, the energy of the phonon is Aw.

e When a phonon of wavevector K is created by the inelastic scattering of a
photon or neutron from wavevector k to k’, the wavevector selection rule that
governs the process is

k=k'+K+G ,

where G is a reciprocal lattice vector.

o All elastic waves can be described by wavevectors that lie within the first
Brillouin zone in reciprocal space.

e If there are p atoms in the primitive cell, the phonon dispersion relation will
have 3 acoustical phonon branches and 3p — 3 optical phonon branches.
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